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It is shown that it is impossible to fix the gauge (i.e., there is a Gribov ambiguity) in a non-abelian gauge theory, with 
any gauge group, defined on the four-torus (which corresponds to a four-dimensional euclidean gauge theory with periodic 
boundary conditions). It is also shown that a Gribov ambiguity exists in SU(2) gauge theories defined on S 2 × S 2 and the 
existence of the Gribov phenomenon is related to the existence of inequivalent quantizations of these theories. 

The main problem in the quantization of  gauge 
theories is that  the lagrangian contains non-physical 
variables which must be eliminated before the theory 
can be quantized. These redundant variables are usual- 
ly removed by imposing a suitable gauge fixing condi- 
tion. In electrodynamics the choice of  the Coulomb 
gauge 

3iAi = 0 for i = 1, 2, 3 (1) 

allows the theory to be discussed in terms of  the trans- 
verse components  of  the vector potential  Au, which 
are the physical variables. Under a gauge transforma- 
tion, A u becomes 

t 
Au =Au + ~uA (2) 

t 
and thus any vector potential  A u can be transformed 
into a potential  A u which satisfies the Coulomb gauge 
condit ion if 

t 
vZA = - S i A  1 , (3) 

where V 2 - ai3 i is the spatial laplacian. If A is regular 
everywhere and finite at infinity, then (3) will have a 
unique solution if the boundary conditions which are 
imposed are such that there are no non-trivial solu- 
tions of  the equation 

V2A = O. (4) 

Therefore, under these assumptions the Coulomb 
gauge is a good gauge fixing condition.  

If we now turn our at tention to non-abelian gauge 
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theories, it would seem reasonable to a t tempt  to fix 
the gauge in such theories by imposing the three- 
dimensional transversality condit ion (1) on the gauge 
potentials A u. Under a non-abelian gauge transforma- 
tion, A u will transform to 

A'  u = g - l A , g  + g-1 ~ug (5) 

and the transversality condit ion (1)wil l  be satisfied if 

~iZi + [D i, ~ig 'g  -1 ] = 0 ,  (6) 

where D i = ~i + Ai is the spatial covariant derivative. 
If (6) possesses a unique solution under the assump- 
tion of  suitable boundary conditions at infinity, then 
the Coulomb gauge will work just as well as it did in 
the abelian case. The existence of  a unique solution of  
eq. (6) was considered by Gribov [1] who showed 
that,  for large enough fields (6) has several solutions. 
Therefore, the Coulomb gauge "fixing" condit ion does 
not fix the gauge uniquely in such a theory.  Motivated 
by this result Singer [2] showed that it was impossible 
to find a continuous gauge fixing condit ion for any 
SU(n) gauge theory defined on a space - t ime  which is 
the four-sphere S 4 (which amounts to studying gauge 
fields on R 4 with certain asymptotic behaviour). 
Singer proved this result by studying the global geom- 
etry of  the gauge theory concerned and showing that 
there existed a topological obstruction to the exis- 
tence of  a global gauge fixing condition. The same 
idea will be used here to show that any non-abelian 
gauge theory defined on the four-torus (which corre- 
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sponds to a gauge theory on  R 4 with periodic bound- 
ary conditions) must possess a Gribov ambiguity, i.e., 
it is impossible to fix the gauge in such a theory.  It is 
also shown that certain gauge theories [(e.g., SU(2) 
gauge theories] defined on S 2 X S 2 have a Gribov am- 
biguity. Finally, the relationship between the existence 
of  the Gribov phenomenon and the existence of  in- 
equivalent quantizations of  gauge theories is discussed. 

In considering the gauge fixing problem it is help- 
ful to recall the geometrical structure of  gauge theo- 
ries [3]. Given a compact,  four-dimensional rieman- 
nian manifold M and a compact,  semi-simple, Lie 
group G, as the space- t ime  and the gauge group, re- 
spectively, we fix a principal G-bundle P over M [4] 

G ~ P  
~ (7) 

M 

with the canonical projection 7r. Let co denote a con- 
nection one-form on P, (i.e., co is a Lie algebra-valued 
one-form on P, with horizontal kernel, which trans- 
forms equivariantly under the action of  G on P) and 
represent the space of  all such connection one-forms 
by C. The curvature of  co is the Lie algebra-valued 
two-form on P given by 

1 03 Y ~ = d c o + ~ [  ,co] , (8) 

where d is the exterior derivative and [ , ] is the Lie 
bracket.  The Yang-Mills  action may be written as 

__if S[co] 2 Hall 2 , (9) 
M 

where the norm II'll is defined in terms of  the rieman- 
nian metric on M and a fixed, adjoint invariant, inner 
product  on the Lie algebra of  G. 

The total  space P of  the bundle (7) is a manifold 
which has a free G-action defined upon it, (denoted 
by p --> pg, for p E P, g E G) the transformations of  P 
which preserve this G-action are called the automor- 
Phisms of  P. In other words, an automorphism of  P is 
a diffeomorphism f : P  ~ P which is G-equivariant [i.e., 
f(pg) = f(p)g, for g E G]. The group of  all automor- 
phisms of  P is denoted by Aut P and the subgroup 
of Aut P which induces the identi ty transformation 
on M (i.e., those f E  Aut P such that n o f =  n) is 
called the group of  gauge transformations. The group 

has a natural action on the space of  connections C 
given by 

f.co =f,co, (lO) 

f o r f E  q and co E e ,  where f . c o  is the pull back of  co 
along]'. The Yang-Mills  action (9) is invariant under 
the transformations (10). In general, for fixed M and 
G there will exist inequivalent principal G-bundles 
over M. For simplicity we will restrict our at tention 
here to the case in which P is the trivial product  bun- 
dle M X G. In this case there exists a global section 
a : M --> P which may be used to pull down the connec- 
tion one-form from P to M. The gauge potential  A on 
M is given by this pull-back a .  co and the field strength 
F of  A is a .  ~2. It follows that the gauge potentials on 
M are in one-to-one correspondence with the connec- 
tion one-forms on P = M X G and from now on we 
will treat them synonymously.  When P is the trivial 
bundle, the group of  gauge transformations simplifies 
to 

~ ~-- Map (M;G) (11) 

the space of  smooth maps from M to G. For a gauge 
potential  A E C the action of g E q is 

g ' A  = g - l A g + g - 1  dg. (12) 

In general this action of ~ on ~ is not free (i.e., there 
exist non-trivial g E ~ for which g "A = A for some 
A E C). However, i f a  basepoint x 0 E M is fixed and 
we consider the subgroup ~ .  of  ~ which consists of 
those g E ~ for which g(xo) = e (e is the identi ty of  G) 
then q ,  has a free action on C. The free q . -act ion on 
G together with the canonical projection p :  Q - + ~ / q .  
results in the sequence 

e/q, (13) 

which is, in fact, a principal ~ . -bundle over C/(9' * [5]. 
In general a gauge fixing condit ion is a rule which 

selects a unique representative gauge potential in each 
class of  gauge equivalent potentials.  Thus, a gauge fix- 
ing condit ion is a smooth map s : C / ~ ,  -+ C such that 
p o s = I d G / q  ;s is a global section of  the bundle (13). 
For a principal bundle, such as (13), the existence of  
a global section s is equivalent to the bundle being 
trivial: i .e. ,  

C= g .  X ~ / ~ . .  (14) 

If the bundle is trivial then the homotopy  groups of  
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Q, ~ ,  and e / ~ ,  are related by 

r rq (e )  ~ r rq (~ , )  • n q ( e / ~ , ) ,  for all q ~> 0 ,  (15) 

where * denotes the direct product of  groups. The 
space of  vector potentials C is clearly an affine space 
[i.e., i fA  1 ,A 2 E G t h e n A  t = tA 1 + (1 - t)A 2 is also 
in e ]  and thus contractible,  so we have that 

n q ( e ) =  0, for a l lq  ~>0 (16) 

and (15) reduces to 

n q ( ~ , )  e n q ( C / ~ , )  = 0, for all q ~> 0 .  (17) 

This relationship will be violated if any of  the homo- 
topy groups of  ~ ,  fail to vanish, and hence, there 
will exist a Gribov ambiguity. 

If the gauge theory is defined on four-dimensional 
euclidean space with periodic boundary conditions 
then this corresponds to considering a gauge theory 
over the four- toms T 4 = S 1 X S 1 X S 1 X S 1. To dem- 
onstrate that any gauge theory over T 4 has a Gribov 
ambiguity we will show that r r0(~,  ) =/= 0. The group 
of  gauge transformations in this case is 

~ ,  = M a p , ( T a ; G ) ,  (18) 

the group of  smooth maps from T 4 to the gauge group 
G, which preserve x 0. Thus 

r r0 (~ , )  = [T 4 ;GI., (19) 

where [T4; G ] ,  is the group of  homotopy  classes of  
base-point preserving maps from T 4 to G. We will now 
show that [T4; G ] ,  :¢: {0} by showing that there 
exists a non-trivial subgroup of  [T4; G] , .  

In general [6] if P = [X;G] ,  and X is a product 
space of  the form X = S na X S n2 X ... X S nk, where 
S ni is the hi-sphere, then the group P has a central 
chain of  length k 

P =  P0 D P 1 D...  D P~ = {0}, (20) 

with 

P i - 1 / P i " ~  [ I  rrn(c0(G). (21) 
lal  ==i 

In (20) Ilml= i denotes the direct products of  the 
homotopy  groups rr n (~)(G) over those subsets 
a C { 1 ,2  . . . . .  k} which have exactly i members. The 
number n(oe) is defined to be 

n((~) = ~ n i . (22) 

Specializing to the case of X = T 4. -= 81 X S 1 X S 1 

X S 1 , the subgroups Pi in (19) give rise to the central 
chain 

F = F 0 D P l  DF '  2 DI" 3 D[ '4  = {0},  (23) 

in which the Pi satisfy: 

P3/F4 • n4(g  ) , 

r 2 / p  3 = 7r3(C ) * =3(G) * rr3(G) * 7rs(G), 

F 1/P 2 m 0 ,  

r 0 / p  I ~- ~rl(C) ® rq(C) ® 7r1(0) * 7h (G) . (24) 

For any compact,  semi-simple, non-abelian, Lie 
group G it is known that rr3(G ) = Z; thus from (24) 
F2 /F  3 --~ Z • Z • Z • Z, and hence the group F 
= [T 4 ;G] ,  has a non-trivial subgroup. In particular 
this result shows that SU(n) gauge theories over T 4 
have a Gribov ambiguity. It also follows that there 
exists a Gribov ambiguity in SU(n)/Z n gauge theories 
on T4; these are the twisted gauge theories intro- 
duced by 't Hooft [7]. It is interesting to note that 
the final line of  (24) implies that there exists a 
Gribov ambiguity on T 4 in the abelian case G = U(1). 
This should be contrasted with the situation of an 
abclian theory on S 4 in which a global gauge fixing 
condition exists. 

An alternative to thinking of  a gauge theory on T 4 
as a four-dimensional euclidean theory with periodic 
boundary conditions is to consider space- t ime  as 
being intrinsically T 4. In fact, T 4 has a K/ihler struc- 
ture and it may be considered as a compact gravita- 
tional instanton [8]. Another compact,  four-dimen- 
sional, Kghler manifold which has also been con- 
sidered as a gravitational instanton is S 2 X S 2. For a 
gauge theory over S 2 X S 2 the group of gauge trans- 
formations is ~ ,  ~-- Map,(S 2 X S 2 ;G) and thus 

r r 0 ( ~ , ) =  [S 2 X S2 ;G] ,  . (25) 

If P = IS 2 X S 2 ;G] ,  then the central chain (20) be- 
comes 

P = I~0 DlP 1 D P 2 = {0) (26) 

and the P i satisfy: 

F1 /P  2 ~ n4(G) 

FO/P 1 ~ 0 .  (27) 
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The group [S 2 X S 2 ;G] ,  will be non-trivial if 7r4(G ) 
4= {0} ; this will occur if G = SU(2), for example, in 
which case ~r4(SU(2)) = Z 2. So there will be a Gribov 
ambiguity in SU(2) gauge theories over S 2 X S 2. 

A phenomenon related to the existence of  the 
Gribov ambiguity is the existence of  inequivalent 
quantizations of  a classical gauge theory [9]. It is 
known that a classical field theory with configuration 
space c-/) will have inequivalent quantizations if c-/) is 
not  simply connected. For a gauge theory,  the action 
is a ~ ,-invariant functional on the space of  gauge po- 
tential C and the configuration space c-/) is the gauge 
orbit  space e / ~  , .  Thus if r r l ( Q / ~ ,  ) :/: {0) the 
gauge theory will have inequivalent quantizations. 
Applying the exact homotopy  sequence to the fibra- 
tion (13) and using the contractibil i ty of  C [eq. (16)] 
results in 

7rq(Q/~,)~--rrq_l(q,), for a l l / > / 1  . (28) 

Thus 7 r l ( Q / ~ , )  ~ r r0 (~ , )  and it is known from the 
previous discussion that for M = T 4, ~0 (~*)  :/: 0, for 
any non-abelian gauge group G. For M = S 2 × S 2 

then l r 0 (~ ,  ) will be non-trivial if 7r4(G ) q: 0 [e.g., if 
G = SU(2)]. Therefore, gauge theories defined on the 
gravitational instantons T 4 and S 2 × S 2 can have in- 
equivalent quantizations. 

In conclusion, it has been shown that it is impos- 
sible to choose a global gauge fixing condit ion in any 
non-abelian gauge theory defined on the four-toms 
and that the same problem occurs for gauge theories 

defined on S 2 X S 2 with certain gauge groups. The in- 
abili ty to fix the gauge in these theories follows from 
the topological nature of the group of  gauge transfor- 
mations ~ .  and it is this topological structure which 
results in the existence of  inequivalent quantizations 
of  these theories. 
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